Novel suppressors of α-synuclein toxicity identified using yeast
نویسندگان
چکیده
The mechanism by which the Parkinson's disease-related protein alpha-synuclein (alpha-syn) causes neurodegeneration has not been elucidated. To determine the genes that protect cells from alpha-syn, we used a genetic screen to identify suppressors of the super sensitivity of the yeast Saccharomyces cerevisiae expressing alpha-syn to killing by hydrogen peroxide. Forty genes in ubiquitin-dependent protein catabolism, protein biosynthesis, vesicle trafficking and the response to stress were identified. Five of the forty genes--ENT3, IDP3, JEM1, ARG2 and HSP82--ranked highest in their ability to block alpha-syn-induced reactive oxygen species accumulation, and these five genes were characterized in more detail. The deletion of any of these five genes enhanced the toxicity of alpha-syn as judged by growth defects compared with wild-type cells expressing alpha-syn, which indicates that these genes protect cells from alpha-syn. Strikingly, four of the five genes are specific for alpha-syn in that they fail to protect cells from the toxicity of the two inherited mutants A30P or A53T. This finding suggests that alpha-syn causes toxicity to cells through a different pathway than these two inherited mutants. Lastly, overexpression of Ent3p, which is a clathrin adapter protein involved in protein transport between the Golgi and the vacuole, causes alpha-syn to redistribute from the plasma membrane into cytoplasmic vesicular structures. Our interpretation is that Ent3p mediates the transport of alpha-syn to the vacuole for proteolytic degradation. A similar clathrin adaptor protein, epsinR, exists in humans.
منابع مشابه
Isolating potentiated Hsp104 variants using yeast proteinopathy models.
Many protein-misfolding disorders can be modeled in the budding yeast Saccharomyces cerevisiae. Proteins such as TDP-43 and FUS, implicated in amyotrophic lateral sclerosis, and α-synuclein, implicated in Parkinson's disease, are toxic and form cytoplasmic aggregates in yeast. These features recapitulate protein pathologies observed in patients with these disorders. Thus, yeast are an ideal pla...
متن کاملEvaluating α-Synuclein’s Interaction with Cellular Phospholipids and Potential Toxicity in Yeast Models for Parkinson’s Disease
Parkinson’s disease is a progressive neurodegenerative disease caused by the death of midbrain dopaminergic neurons. The misfolding and aggregation of α-synuclein plays a ruinous role in this disease, but how the protein becomes toxic is unclear. Using yeasts as model organisms for studying α-synuclein properties, our study explores the hypothesis that α-synuclein toxicity depends on plasma mem...
متن کاملMolecular Determinant of α-Synuclein Pathotoxicity in Yeast Models
Parkinson disease (PD) is an incurable neurodegenerative disorder linked to the misfolding and aggregation of α-synuclein protein in dying neurons. Several molecular features of α-synuclein that appear to contribute to its properties are the familial mutant E46K, serine phosphorylation, and hydrophobic residues, but their exact role is unclear. I used two yeast models to examine how the E46K mu...
متن کاملDoes α-Synuclein use Endocytosis as a Route for Degradation by the Lysosome?
Parkinson’s disease (PD) is an incurable fatal brain disorder linked to three disease-related properties that result from α-synuclein accumulation: its misfolding, aggregation, and cellular toxicity. Accelerating αsynuclein degradation might provide therapy by reducing its accumulation. We tested if the lysosome degrades α-synuclein by a specific route, endocytosis, in a budding yeast model for...
متن کاملComponents Enhancing α-synuclein Aggregation and Toxicity in a Humanized Yeast
We developed a humanized yeast model to investigate the pathogenic mechanisms of α-synuclein (αSYN). Our data demonstrate that αSYN aggregation is a nucleation-elongation process initiated at the plasma membrane. It can be enhanced by treatment with DMSO and even drugs that influence autophagic and proteasomal clearance have dramatic effects. Moreover, aggregation of αSYN interferes with endocy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human Molecular Genetics
دوره 17 شماره
صفحات -
تاریخ انتشار 2008